76 research outputs found

    Neuroinflammation-Related Proteins NOD2 and Spp1 Are Abnormally Upregulated in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown etiology and poorly understood pathophysiology. There is no specific biomarker either for diagnosis or prognosis. The aim of our study was to investigate differentially expressed proteins in the CSF and serum from patients with ALS to determine their role in the disease process and evaluate their utility as diagnostic or prognostic biomarkers. We performed mass spectrometry in the CSF from 3 patients with ALS and 3 healthy controls (HCs). The results were compared with motor cortex dysregulated transcripts obtained from 11patients with sporadic ALS and 8 HCs. Candidate proteins were tested using ELISA in the serum of 123 patients with ALS, 30 patients with Alzheimer disease (AD), 28 patients with frontotemporal dementia (FTD), and 102 HCs. Patients with ALS, AD, and FTD were prospectively recruited from January 2003 to December 2020. A group of age-matched HCs was randomly selected from the Sant Pau Initiative on Neurodegeneration cohort of the Sant Pau Memory Unit. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and osteopontin (Spp1) were differentially expressed in the CSF and the motor cortex transcriptome of patients with ALS compared with that in HCs (p < 0.05). NOD2 and Spp1 levels were significantly higher in sera from patients with ALS than in HCs (p < 0.001). Receiver operating characteristic analysis showed an area under the curve of 0.63 for NOD2 and 0.81 for Spp1. NOD2 levels were significantly lower in patients with AD and FTD than in patients with ALS (p < 0.0001), but we found no significant differences in Spp1 levels between patients with ALS, AD (p = 0.51), and FTD (p = 0.42). We found a negative correlation between Spp1 levels and ALS functional rating scale (r = −0.24, p = 0.009). Our discovery-based approach identified NOD2 as a novel biomarker in ALS and adds evidence to the contribution of Spp1 in the disease process. Both proteins are involved in innate immunity and autophagy and are increased in the serum from patients with ALS. Our data support a relevant role of neuroinflammation in the pathophysiology of the disease and may identify targets for disease-modifying treatments in ALS. Further longitudinal studies should investigate the diagnostic and prognostic value of NOD2 and Spp1 in clinical practice

    Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's disease and frontotemporal dementia

    Get PDF
    4 páginas, 1 figura, a tabla. Los autores pertenecen a The dementia genetic Spanish consortium (DEGESCO).A non-synonymous genetic rare variant, rs75932628-T (p.R47H), in the TREM2 gene has recently been reported to be a strong genetic risk factor for Alzheimer's disease (AD). Also, rare recessive mutations have been associated with frontotemporal dementia (FTD). We aimed to investigate the role of p.R47H variant in AD and FTD through a multi-center study comprising 3,172 AD and 682 FTD patients and 2,169 healthy controls from Spain. We found that 0.6% of AD cases carried this variant compared to 0.1% of controls (odds ratio [OR]=4.12, 95% confidence interval [CI]: 1.21-14.00, P=0.014). A meta-analysis comprising 32,598 subjects from four previous studies demonstrated the large effect of the p.R47H variant in AD risk (OR=4.11, 95% CI: 2.99-5.68, P=5.27x10-18). We did not find an association between p.R47H and age of onset of AD or family history of dementia. Finally, none of the FTD patients harbored this genetic variant. These data strongly support the important role of p.R47H in AD risk and suggest that this rare genetic variant is not related to FTD.This study was supported by grants from Instituto de Salud Carlos III (PI12/01311 and 12/00013), grants from the Ministry of Science (SAF2010-15558, SAF2009-10434), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, Spain), Consolider (CSD2010-00045), and the Department of Health of the Government of Navarra (refs. 13085 and 3/2008). CR held during the period 2009-2013 a “Torres Quevedo” fellowship from the Spanish Ministry of Science and Technology, co-financed by the European Social Fund. Fundació ACE researchers are indebted to Trinitat Port-Carbó and her family who are supporting Fundació ACE scientific programs.Peer reviewe

    Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration

    Get PDF
    Can widely available measures of atrophy on magnetic resonance imaging increase diagnostic certainty of underlying frontotemporal lobar degeneration (FTLD) and estimate clinical deterioration in the behavioral variant of frontotemporal dementia (bvFTD)? This diagnostic/prognostic study investigated the clinical utility of 5 validated visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index. When combined, VAS showed excellent diagnostic performance for differentiating between bvFTD with high and low confidence of FTLD and for the estimation of longitudinal clinical deterioration, whereas the Magnetic Resonance Parkinsonism Index was increased in bvFTD with underlying 4-repeat tauopathies. These findings suggest that, in bvFTD, VAS can be used to increase diagnostic certainty of underlying FTLD and estimate longitudinal clinical deterioration. This diagnostic/prognostic study assesses the utility of 6 visual atrophy scales and the Magnetic Resonance Parkinsonism Index in patients with behavioral variant frontotemporal dementia to distinguish those with high vs low confidence of frontotemporal lobar degeneration. The presence of atrophy on magnetic resonance imaging can support the diagnosis of the behavioral variant of frontotemporal dementia (bvFTD), but reproducible measurements are lacking. To assess the diagnostic and prognostic utility of 6 visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index (MRPI). In this diagnostic/prognostic study, data from 235 patients with bvFTD and 225 age- and magnetic resonance imaging-matched control individuals from 3 centers were collected from December 1, 1998, to September 30, 2019. One hundred twenty-one participants with bvFTD had high confidence of frontotemporal lobar degeneration (FTLD) (bvFTD-HC), and 19 had low confidence of FTLD (bvFTD-LC). Blinded clinicians applied 6 previously validated VAS, and the MRPI was calculated with a fully automated approach. Cortical thickness and subcortical volumes were also measured for comparison. Data were analyzed from February 1 to June 30, 2020. The main outcomes of this study were bvFTD-HC or a neuropathological diagnosis of 4-repeat (4R) tauopathy and the clinical deterioration rate (assessed by longitudinal measurements of Clinical Dementia Rating Sum of Boxes). Measures of cerebral atrophy included VAS scores, the bvFTD atrophy score (sum of VAS scores in orbitofrontal, anterior cingulate, anterior temporal, medial temporal lobe, and frontal insula regions), the MRPI, and other computerized quantifications of cortical and subcortical volumes. The areas under the receiver operating characteristic curve (AUROC) were calculated for the differentiation of participants with bvFTD-HC and bvFTD-LC and controls. Linear mixed models were used to evaluate the ability of atrophy measures to estimate longitudinal clinical deterioration. Of the 460 included participants, 296 (64.3%) were men, and the mean (SD) age was 62.6 (11.4) years. The accuracy of the bvFTD atrophy score for the differentiation of bvFTD-HC from controls (AUROC, 0.930; 95% CI, 0.903-0.957) and bvFTD-HC from bvFTD-LC (AUROC, 0.880; 95% CI, 0.787-0.972) was comparable to computerized measures (AUROC, 0.973 [95% CI, 0.954-0.993] and 0.898 [95% CI, 0.834-0.962], respectively). The MRPI was increased in patients with bvFTD and underlying 4R tauopathies compared with other FTLD subtypes (14.1 [2.0] vs 11.2 [2.6] points; P < .001). Higher bvFTD atrophy scores were associated with faster clinical deterioration in bvFTD (1.86-point change in Clinical Dementia Rating Sum of Boxes score per bvFTD atrophy score increase per year; 95% CI, 0.99-2.73; P < .001). Based on these study findings, in bvFTD, VAS increased the diagnostic certainty of underlying FTLD, and the MRPI showed potential for the detection of participants with underlying 4R tauopathies. These widely available measures of atrophy can also be useful to estimate longitudinal clinical deterioration

    Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration

    Get PDF
    Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology

    The Sant Pau Initiative on Neurodegeneration (SPIN) cohort : A data set for biomarker discovery and validation in neurodegenerative disorders

    Get PDF
    Altres ajuts: The SPIN cohort has received funding from CIBERNED; Instituto de Salud Carlos III; jointly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa"; Generalitat de Catalunya; Fundació "La Marató TV3" Fundació Bancària Obra Social La Caixa; Fundación BBVA; Fundación Española para el Fomento de la Investigación de la Esclerosis Lateral Amiotrófica (FUNDELA); Global Brain Health Institute; Fundació Catalana Síndrome de Down; and Fundació Víctor Grífols i Lucas. These funding sources had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.The SPIN (Sant Pau Initiative on Neurodegeneration) cohort is a multimodal biomarker platform designed for neurodegenerative disease research following an integrative approach. Participants of the SPIN cohort provide informed consent to donate blood and cerebrospinal fluid samples, receive detailed neurological and neuropsychological evaluations, and undergo a structural 3T brain MRI scan. A subset also undergoes other functional or imaging studies (video-polysomnogram, 18 F-fluorodeoxyglucose PET, amyloid PET, Tau PET). Participants are followed annually for a minimum of 4 years, with repeated cerebrospinal fluid collection and imaging studies performed every other year, and brain donation is encouraged. The integration of clinical, neuropsychological, genetic, biochemical, imaging, and neuropathological information and the harmonization of protocols under the same umbrella allows the discovery and validation of key biomarkers across several neurodegenerative diseases. We describe our particular 10-year experience and how different research projects were unified under an umbrella biomarker program, which might be of help to other research teams pursuing similar approaches

    Cumulative Genetic Score and C9orf72 Repeat Status Independently Contribute to Amyotrophic Lateral Sclerosis Risk in 2 Case-Control Studies

    Get PDF
    [Background and Objectives] Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores.[Methods] Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication.[Results] Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04–1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10−6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04–1.23).[Discussion] ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.National ALS Registry/CDC/ATSDR (1R01TS000289); National ALS Registry/CDC/ATSDR CDCP-DHHS-US (CDC/ATSDR 200-2013-56856); NIEHS K23ES027221; NIEHS R01ES030049; NINDS R01NS127188, ALS Association (20-IIA-532), the Dr. Randall W. Whitcomb Fund for ALS Genetics, the Peter R. Clark Fund for ALS Research, the Scott L. Pranger ALS Clinic Fund, and the NeuroNetwork for Emerging Therapies at the University of Michigan. This work was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (Z01-AG000949-02). Project “ALS Genetic study in Madrid Autonomous Community” funded by “ESTRATEGIAS FRENTE A ENFERMEDADES NEURODEGENERATIVAS” from Spanish Ministry of Health.Peer reviewe

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Amyloid-beta 42 (A beta 42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for A beta 42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple A beta 42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.Peer reviewe

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
    corecore